63 research outputs found

    Pressure screening in the interior of primary shells in double-wall carbon nanotubes

    Full text link
    The pressure response of double-wall carbon nanotubes has been investigated by means of Raman spectroscopy up to 10 GPa. The intensity of the radial breathing modes of the outer tubes decreases rapidly but remain observable up to 9 GPa, exhibiting a behavior similar (but less pronounced) to that of single-wall carbon nanotubes, which undergo a shape distortion at higher pressures. In addition, the tangential band of the external tubes broadens and decreases in amplitude. The corresponding Raman features of the internal tubes appear to be considerably less sensitive to pressure. All findings lead to the conclusion that the outer tubes act as a protection shield for the inner tubes whereas the latter increase the structural stability of the outer tubes upon pressure application.Comment: PDF with 15 pages, 3 figures, 1 table; submitted to Physical Review

    11^{11}B NMR study of pure and lightly carbon doped MgB2_2 superconductors

    Full text link
    We report a 11^{11}B NMR line shape and spin-lattice relaxation rate (1/(T1T)1/(T_1T)) study of pure and lightly carbon doped MgB2−x_{2-x}Cx_{x} for x=0x=0, 0.02, and 0.04, in the vortex state and in magnetic field of 23.5 kOe. We show that while pure MgB2_2 exhibits the magnetic field distribution from superposition of the normal and the Abrikosov state, slight replacement of boron with carbon unveils the magnetic field distribution of the pure Abrikosov state. This indicates a considerable increase of Hc2cH_{c2}^c with carbon doping with respect to pure MgB2_2. The spin-lattice relaxation rate 1/(T1T)1/(T_1T) demonstrates clearly the presence of a coherence peak right below TcT_c in pure MgB2_2, followed by a typical BCS decrease on cooling. However, at temperatures lower than ≈10\approx 10K strong deviation from the BCS behavior is observed, probably from residual contribution of the vortex dynamics. In the carbon doped systems both the coherence peak and the BCS temperature dependence of 1/(T1T)1/(T_1T) weaken, an effect attributed to the gradual shrinking of the σ\sigma hole cylinders of the Fermi surface with electron doping.Comment: 8 pages, 6 figures, submitted to Phys. Rev.

    Failure Processes in Embedded Monolayer Graphene under Axial Compression

    Get PDF
    Exfoliated monolayer graphene flakes were embedded in a polymer matrix and loaded under axial compression. By monitoring the shifts of the 2D Raman phonons of rectangular flakes of various sizes under load, the critical strain to failure was determined. Prior to loading care was taken for the examined area of the flake to be free of residual stresses. The critical strain values for first failure were found to be independent of flake size at a mean value of –0.60% corresponding to a yield stress up to -6 GPa. By combining Euler mechanics with a Winkler approach, we show that unlike buckling in air, the presence of the polymer constraint results in graphene buckling at a fixed value of strain with an estimated wrinkle wavelength of the order of 1–2 nm. These results were compared with DFT computations performed on analogue coronene/PMMA oligomers and a reasonable agreement was obtained

    muSR study of carbon-doped MgB2 superconductors

    Full text link
    The evolution of the superconducting properties of the carbon-doped MgB2 superconductors, MgB(2-x)Cx (x= 0.02, 0.04, 0.06) have been investigated by the transverse-field muon spin rotation (TF-muSR) technique. The low-temperature depolarisation rate, sigma(0) at 0.6 T which is proportional to the second moment of the field distribution of the vortex lattice decreases monotonically with increasing electron doping and decreasing Tc. In addition, the temperature dependence of sigma(T) has been analysed in terms of a two-gap model. The size of the two superconducting gaps decreases linearly as the carbon content increases, while the doping effect is more pronounced for the smaller gap related to the 3D pi-sheets of the Fermi surface.Comment: 7 pages, 2 Figures, 1 Table, Europhys. Lett. in pres

    Biaxial strain tuning of exciton energy and polarization in monolayer WS2

    Full text link
    We perform micro-photoluminescence and Raman experiments to examine the impact of biaxial tensile strain on the optical properties of WS2 monolayers. A strong shift on the order of -130 meV per % of strain is observed in the neutral exciton emission at room temperature. Under near-resonant excitation we measure a monotonic decrease in the circular polarization degree under applied strain. We experimentally separate the effect of the strain-induced energy detuning and evaluate the pure effect coming from biaxial strain. The analysis shows that the suppression of the circular polarization degree under biaxial strain is related to an interplay of energy and polarization relaxation channels as well as to variations in the exciton oscillator strength affecting the long-range exchange interaction.Comment: 29 pages, 11 figure

    Retention of Two-Band Superconductivity in Highly Carbon-Doped MgB2

    Full text link
    Tunneling data on MgB_{1.8}C_{0.2} show a reduction in the energy gap of the pi-bands by a factor of two from undoped MgB2 that is consistent with the Tc reduction, but inconsistent with the expectations of the dirty limit. Dirty-limit theory for undoped MgB2 predicts a single gap about three times larger than measured and a reduced Tc comparable to that measured. Our heavily-doped samples exhibit a uniform dispersion of C suggestive of significantly enhanced scattering, and we conclude that the retention of two-band superconductivity in these samples is caused by a selective suppression of interband scattering.Comment: 4 pages, 4 figures; added one figure, added one reference, minor changes to the text, manuscript accepted for publication as a Phys. Rev. B Rapid Communicatio
    • …
    corecore